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The lattice model gives a starting point for a theoretical description of the thermodynamic properties of 
polymer solution systems. Classical models, such as the Flory-Huggins model and the quasi-chemical 
model, present too narrow or parabolic coexistence curves when compared with experimental data. It is well 
known that failures of the lattice model are due to mathematical approximations for the effects of non- 
random mixing in order to gain an analytical solution. Moreover, the existing configurational energy of 
mixing, in which the residual terms are truncated, results in significant errors in the prediction of the 
coexistence curve calculations for polymer solution systems. 

The proposed model in this study improves the mathematical approximation defect and gives a new 
expression for the configurational energy of mixing. To correlate the energy of mixing term, including the 
effect of non-random mixing on the configurational thermodynamic properties of a binary mixture with 
simulation data, we use Monte-Carlo simulation data. Monte-Carlo simulation gives essentially exact 
results for the lattice model. The configurational Helmholtz energy is obtained upon combining the 
Gibbs-Helmholtz equation with Guggenheim's athermal entropy of mixing as a boundary condition. 
The coexistence curves generated by the proposed model are compared with experimental data. © 1997 
Elsevier Science Ltd. 
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INTRODUCTION 

Lattice models have played a frequent part in the theory 
of polymer solutions. A variety of polymer-solution 
theories have been developed during the last half- 
century. Molecular-based thermodynamic models for 
describing liquid-liquid equilibria (LLE) in polymer 
mixtures can be divided into four categories, each 
corresponding to a particular statistical mechanical 
framework: incompressible-lattice models, generalized van 
der Waals partition-function theories, compressible-lattice 
models 1-3, and off-lattice (continuous-space) models of 
chain fluids. 

The most widely used and best known example of 
the incompressible-lattice model is the Flory-Huggins 
theory 4-8, which illustrates in a simple way the competi- 
tion between the entropy of mixing and the attractive 
forces that produce liquid-liquid phase separation at low 
temperatures with an upper critical solution temperature. 
Much work has been done to improve the mathematical 
solution of the lattice model, including chain connectivity 
and non-random mixing 9. However, the Flory-Huggins 
and quasi-chemical models give too narrow or parabolic 
liquid-liquid coexistence curves near the critical region 
when compared with experimental data. The previous 
lattice models for liquid-liquid coexistence curves show 
a discrepancy resulting from mathematical approximation 

* To w h o m  cor respondence  should  be addressed  

for considering the effect of non-random mixing. For an 
analytical solution to the lattice model, the Flory-  
Huggins model, which is only the Bragg-Williams 
random mixing model extended to chain systems, does 
not consider non-random mixing. The quasi-chemical 
model, which considers non-random mixing, is only 
accurate for small deviations from random mixing. 

Furthermore, to pursue a formal 'exact' solution to the 
lattice model using advanced statistical-mechanical 
methods 1°-17, Freed and coworkers developed a lattice 

10 17 field theory (or lattice cluster theory) - for polymer/ 
solvent systems. This theory formally provides an exact 
mathematical solution for the Flory-Huggins model. 
However, for practical reasons, the infinite series with 
respect to coordination number, temperature and 
composition in this theory are truncated at a certain 
order. Therefore, this theory still remains deficient for 
the correlation of liquid-liquid equilibria. Recently, 
Lambert e t  al.  18 reported a new expression for AmixA 
for incompressible monomer/r-mer mixtures obtained 
by correlating the Monte-Carlo simulation results. In 
their study, they used the algebraic form, which is a 

19 Redlich-Kister expansion truncated after the third 
term, to correlate energy of mixing data with Monte- 
Carlo simulation results. These improvements provide 
better agreement with experimental data by widening the 
liquid-liquid coexistence curve. 

The purpose of this study is to simplify the expression 
of AmixA and improve the mathematical approximation 
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defect, using the fractional form rather than the algebraic 
form with second-order approximation for the config- 
urational energy of non-random mixing”. Our model is 
conceptually and mathematically simple. It requires only 
two adjustable parameters. 

MODEL DEVELOPMENT 

Internal and Helmholtz energies of mixing 
The description of the lattice model starts with a simple 

cubic lattice (coordination number 2 = 6) containing N, 
sites. The lattice is filled completely by Nt molecules of 
type 1, which occupy only one lattice site (r, = l), and N2 
molecules of type 2, which occupy r2 nearest-neighbour 
lattice sites (r-mer). The energy of mixing is related to the 
number of nearest-neighbour pairs by 

4nixU 1 N12 
N,c =TN, 

where Nt2 is the total number of l-2 pairs and e is the 
interchange energy. 

e=e22+eit -292 (2) 

where eij is the i-j nearest-neighbour interaction energy. 
The Helmholtz energy of mixing (A,i,A) is obtained 
by integrating the Gibbs-Helmholtz equation using the 
Guggenheim athermal entropy of mixing as boundary 
condition: 

1 (4) 
A dimensionless temperature is defined by f = kT/c, 

where Tis the absolute temperature and k is Boltzmann’s 
constant. ri, $i and 0i are the number of segments per 
molecule, volume fraction and surface fraction of 
component i, respectively. 4i and Bi are defined by: 

4i = 
Niri 

Nlrl + M-2 

fJi = Niqi 
Nlql + N2q2 

where qi is the surface area parameter; 

Zqi = li(Z - 2) + 2 7) 

Correlation of simulation data 
The fractional form, to improve the mathematical 

approximation defect and to correlate energy of mixing 
data from Monte-Carlo simulation18, is given by 

y = 4149 [I _ A’(;2 _ dl)] (8) 
r 

where 

A’ =a0 + aI [exp(l/p) - l] (9) 

B’ = b. + b1 [exp(l/?) - l] (10) 
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Figure 1 Plots of normalized energy of mixing for monomer (1)/20- 
mer (2) mixtures as a function of I$*. The open circles, solid circles, open 
squares and solid squares are Monte-Carlo simulation results’s for 
kT/c values of 3, 6, 10 and 00, respectively. The solid lines are 
calculated by equation (8) 

where @i and eS2 are the monomer and r-mer volume 
fractions, respectively. Parameters A’ and B’ depend on 
dimensionless temperature only. 

Universal constants 
Lambert et a1.18 reported that ao, al, b. and bl are 

very weak functions of r2 when r2 is adequately large. In 
this study, we use the same assumption. These constants 
are not adjustable parameters and are determined by 
comparison with Monte-Carlo simulation results. 

Figure I shows the energy of mixing for monomer/20- 
mer mixtures as a function of r-mer volume fraction for 
various dimensionless temperatures. The solid lines are 
the fit given by equation (8) with best fitting values of ao, 
al, b. and bi. 

Figure 2 shows A’ and B’ as a function of reciprocal of 
dimensionless temperature. The solid lines are given by 
equations (9) and (10). Obtained values of ao, al, b. and 
b, are 0.1057, 0.0614, 4.6846 and -1.3970, respectively. 
A simple lattice model expression for predicting liquid- 
liquid equilibria is given by 

(11) 

A = (alb0 - a0hHV2 - 1) + bl 
1 + (al - a0)(242 - 1) ’ 

bo -bl 
B = 1 + (al - ao)(2q52 - 1) (12) 

and the critical condition is given by 
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Figure 2 Plots of A ~ and B ~ as a function of reciprocal of 
dimensionless temperature. The upper solid line is calculated by 
equation (10). The lower solid line is calculated by equation (9). Open 
circles are values calculated by correlating with Monte-Carlo simula- 
tion results ~s 
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Figure 3 Coexistence curves for PS/t-butyl acetate systems. The open 
squares, diamonds and circles are experimental data 2~ for PS molecular 
weights of 600 000, 233 000 and 100 000, respectively. The solid lines are 
calculated by equations (17) and (18) 

The critical temperature and critical volume fraction 
can be obtained by solving the following two equations 
simultaneously: 

1-q~----~ + 1 - ~  +~- q,\  qiZq~l j 

+ \ ~ 2 ~ b i -  r2~bl, ] + q2 g~12 ] 

<) + 2qcP2Y2rlc~2(2¢2 - 1) 

-rl(~b 2-~b 3) ~ =0 (14) 

1 
(1 - - ~ 2 )  2 

r 

a / { ( ~ 2 ~ ,  - 020 , )  - (~2 - 02)(1  - 2 ~ 2 ) }  
~-~- [ql 

-~ 0102(01 --(-q~Tq~02 -- 2-1 -+- 2(b2) (ql -k- q2 r ~  1 rl q~2"~] 

-}- ~,~2~1 ~,r2fb21J 

+ q--rl(O2*l+O2Ol--2fb20l)] -I- 2r, r 
r2 -i31~; 

+ 2 r , ( 5 0 2 - 1 )  ~ +r ,q~2(7~2-4)  

/o3r~ 
- r , ( ~ - ~ h \ - ~ ]  =0 (15/ 

where 

Y = ~ B al(2q52- 1) 

{ a"2°2-" }l 
x In l - 1 - ao(2~2-  1) {exp(1/T) - 1} (16) 

The coexistence curve is found from the conditions 

A#', = A # ' ( ( 1 7 )  

where A#i is the change in chemical potential upon 
isothermally transferring component i from the pure 
state to the mixture. Superscripts ' and " denote two 
phases at equilibrium. Relative to pure component 1, the 
chemical potential A#1 of component 1 in the solution is 
defined by (r,) (0/'mixA) =1n(1-~2/+~2 1-72 
m~l = ~, 0~1 .IT, N2 

z[ 1 + ~ ql ln~l  + ql(02 -- q~2)÷ q2 r24hr10~2(~bl-01) 

+rlO2y +rlO20l ~l (19) 

and a similar relation holds for A#2 

(0Z~mixA~ =In<+(1 - -< /  1-- 7 
A#2 = •  ON 2 /]T,N 1 

z [ 02 r20, ,, ] 
+~ q21n~+q2(Ol - ~b2) + ql r--~2 ~2 -02 )  

+ r2~b2 Y + r2~2~b2 ~ 2  (20) 
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Figure 4 Coexistence curves for PSlacetone systems. The open squares 
and circles are experimental data 26 for PS molecular weights of 10 300 
and 4800, respectively. The solid lines are calculated by equations (17) 
and (18) 
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Figure 5 Coexistence curves for PIB/diisobutyl ketone systems. The 
open diamonds, squares and circles are experimental data 28 for PIB 
molecular weights of 6 000 000, 285 000 and 22 700, respectively. The 
solid lines are calculated by equations (17) and (18) 

RESULTS AND DISCUSSION 

It is essential to fix model parameters r2 and elk in order 
to compare calculated results with experimental liquid- 
liquid equilibria data 2°-22. In this study, to give 
agreement with the experimental results, r2 and elk are 
simultaneously adjusted for all cases from equations (14) 

and (15). The energy parameter, elk, has no effect on the 
shape of the coexistence curve. Therefore, r 2 is the most 
important parameter for determining the shape of the 
calculated coexistence curve. 

Figure 3 shows phase diagrams of data for poly- 
styrene (PS) in tert-butyl acetate 23-26 in which only 
upper critical solution temperature data are compared, 
since specific interaction 21'~2 and free volume effect 1-3 
are not considered in the proposed model. 

As shown in Figure 3, the calculated curves agree very 
well with experimental data. Values of elk depend weakly 
on the chain length of the polymer, elk values for 
molecular weights of 600000, 233000 and 100000 are 
59.6, 62.04 and 62.68 K, respectively, r 2 values are very 
sensitive in the calculation of coexistence curves. 

Figure 4 shows phase diagrams of PS in acetone 
systems 26. elk values for PS molecular weights of 10 300 
and 4800 are 72.09 and 62.21 K, respectively. A slight 
discrepancy shows between calculated results using the 
proposed model and experimental data in the high 
polymer concentration range. However, the model gives 
a reasonable prediction of critical points. For high 
molecular weight of polymer, there is more deviation 
between calculated and experimental results than those 
for low molecular weight of polymer. This is because the 
proposed model uses the simulation data for the energy 
of mixing for monomer/20-mer (r 2 = 20) mixtures. 

Figure 5 shows phase diagrams of poly(isobutylene) 
(PIB) in diisobutyl ketone systems 4-7. elk values for PIB 
molecular weights of 6 000 000, 285 000 and 22 700 are 
68.91, 68.61 and 68.59K, respectively. In this system 
there are also slight deviations between calculated and 
experimental results. The model presented here has 
considered only liquid-liquid equilibria with an upper 
critical solution temperature, since it has not considered 
the oriented intermolecular forces and free volume effects 
which are essential for explaining lower critical solution 
temperatures that exist above the upper critical solution 
temperature 27. 

In the proposed model, various flexibilities of chain 
molecules are not included. The model implicitly 
assumes that poly(isobutylene) (Figure 5) has the same 
flexibility as that of polystyrene (Figures 3 and 4). 
Further, solvent molecules (diisobutyl ketone in Figure 5, 
acetone in Figure 4, and t-butyl acetate in Figure 3) are 
considered to be monomers where the concept of 
flexibility does not apply. It is likely that this deficiency 
is basically responsible for the discrepancy between the 
proposed model and experimental results. 

CONCLUSIONS 

A simplified and improved expression of AmixU is 
proposed for the Helmholtz energy of mixing for 
monomer/r-mer mixture obtained by correlating 
Monte-Carlo simulation results. For some binary 
systems, our correlating equation successfully represents 
liquid-liquid equilibria for various molecular weights of 
polymers using the same universal parameters. Our 
proposed model agrees well with experimental results. 
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